<>/ExtGState<>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 14 0 R/Group<>/Tabs/S/StructParents 1>> COMPUTATION OF AREAS AND VOLUMES: Area from field notes, computation of areas along irregular boundaries and area consisting of regular boundaries. If the mass of an object is 35 grams and it takes up 7 cm3 of space, calculate the density Set up your density problems like this: Given: Mass = 35 grams Unknown: Density (g/ cm3) Volume = 7 cm3 Formula: D = M / V Solution: D = 35g/7 cm3 D = 5 g/cm3 endobj endobj 13 0 obj 8 0 obj Recognises that the conversion factors for area of units are the squares of those for the corresponding linear units and for volume, units are the cubes of those for the corresponding linear units . <>>> Finding volume of a solid of revolution using a washer method. 4 0 obj Latest Material Links Link – Complete Notes Link – Unit 1 Notes Link – Unit 2 Notes Link – Unit 3 Notes Link – Unit 4 Notes Link – Unit 5 Notes Old Material Links Link:Complete Notes. %PDF-1.4 endobj m 2. cm. PHYSICS IGCSE 2012 EXAM REVISION NOTES By Samuel Lees and Adrian Guillot 1. 1. 11 0 obj )�i�y��E�?���}��?�n�;K�5j��([��`l'. 10 0 obj x��[]�&E΂�8��uvA�Q�~M���[cb��L���F�aH����ꮮS�VMw��:�l�־]}���|Ω��;6pѱ�' ��������_����L������ 2���n�? Finding volume of a solid of revolution using a disc method. <> <> Volume of Cones - In Class Notes . stream If a region in the plane is revolved about a given line, the resulting solid is a solid of revolution, and the line is called the axis of revolution. 2) Find the volume of the object 3) Divide : Density = Mass ÷ Volume To find density: Ex. <>/ExtGState<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> %PDF-1.5 In each prism, identify a base, a face, an edge, and a vertex. Finding volume of a solid of revolution using a shell method. HOW TO READ MUSIC NOTES (QUICK-LEARN CHEAT SHEETS), Page 5 Steady Beat = an unchanging, continuous pulse Rhythm = a pattern of long and short notes and rests. General physics 1.1 length and time 1.2 Speed, velocity and acceleration 1.3 Mass and weight 1.4 Density 1.5 Forces a. Volume and Surface Area Notes For Class 9 Formulas Download PDF SOLIDS : The bodies occupying space (i.e. endobj 6 0 obj The volume V of a cone is one third the area of its base B times its height h . �V+��6�R; �[hvرqzr�:n-�������÷ڸ��?���{N\��K�> <> Height . 14 0 obj NCERT Notse Maths Class 10 ... Volume of material = Exterior volume — Interior volume = πR 2 h — πR 2 h = πh(R 2 – r 2) 2. <> Չ�= `�2��N�8Zw���C���C!�D��x���f|���2_Q$M�U&����82P��G�o��6RĶ�A%-�����ͱ�����G�����>��w�\��cBw:�����s���U3�'���-�}������BWsxH���H=�E���pL�2�XB. endobj VOLUME NOTES Key Words: fill inside (3-D) capacity mass Definition: the amount of space inside a 3-dimensional object Unit of Measurement/Label: cubic units (in³, ft³, yd³, mm³, cm³, m³) The material in the current presentation is still meant to be a set of lecture notes, not a text book. V=1/3Bh . Effects of forces b. Prisms Volume= Base X Height V = bh Surface= 2b + Ph (b is the area of the base P is the perimeter of the base) Cylinder Volume= r2 X height V = r2h Surface= 2 radius X height S = 2rh + 2r2 1 0 obj <> %���� 9 0 obj Turning effect c. Conditions for equilibrium d. Centre of mass e. Scalars and vectors 1.6 Energy work power a. The rst draft of these notes was produced in 1987 and they have been corrected, re ned and expanded on every following occasion that I taught these classes. A prism is named by the shape of its _____. If the figure is shown as a 3-D grid, count all the cubes. C. S. A or L. S. A = external surface area + internal surface area = 2πRh + 2πrh. 5 0 obj f�~A�/���p X%���#���F���{�|����~���~�@�9:�8�E�P�w��k3@;бp����`x˥^�O� ��k�Ec��B�%�dTpq3:��:������W�����`t3���UW�ʊ8#�p�k�e���]�&L"#�� ]�A���w#�q�IxF�!��B70��x��DJ�tJ�&��aC< � i�ф8�q�x=�L����� �p���zO'�43��M�6�+$�:D|�gF��� և�`E!��oB��J�KCS@�C�8��q�����%����>�c��3�>��E�']�GT�8قS̹��@S ��p�J0���ɠu���D8UJ�M ��=SY��B�G��`/������]��D}�����8O�E��-�9ʹ���8Հ}k-4�J7�f���Y��LDd���.=][zu1ш�u0- R 3 0 obj x��W�n�F}��G2�V;{# d�v�Žk�(#(h��5�JJ[�}f��EƢ��0�;gΜ�9\G��z�����pt8��U��g��a��e8{�f��t����z�����r�9d��l|g�~ox��